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Q: Which direction is this dog moving?
A: The dog is moving towards the left direction.
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Figure 1. Feature4X: Building 4D Interactive Scenes with Agentic AI from Monocular Videos. By dynamically distilling model-
conditioned features and integrating 2D foundation models with LLMs in feedback loops, Feature4X enables multimodal tasks across 2D,
3D, and 4D with high-level language inputs or direct user interactions, including (but not limited to) segmentation, scene editing, and VQA
across novel views and all time steps, unlocking new possibilities for 4D agentic AI.

Abstract

Recent advancements in 2D and multimodal models have
achieved remarkable success by leveraging large-scale
training on extensive datasets. However, extending these
achievements to enable free-form interactions and high-
level semantic operations with complex 3D/4D scenes re-
mains challenging. This difficulty stems from the limited
availability of large-scale, annotated 3D/4D or multi-view
datasets, which are crucial for generalizable vision and
language tasks such as open-vocabulary and prompt-based
segmentation, language-guided editing, and visual question
answering (VQA). In this paper, we introduce Feature4X,
a universal framework designed to extend any functionality
from 2D vision foundation model into the 4D realm, using
only monocular video input, which is widely available from

*Equal contribution.

user-generated content. The “X” in Feature4X represents
its versatility, enabling any task through adaptable, model-
conditioned 4D feature field distillation. At the core of
our framework is a dynamic optimization strategy that uni-
fies multiple model capabilities into a single representation.
Additionally, to the best of our knowledge, Feature4X is the
first method to distill and lift the features of video foun-
dation models (e.g. SAM2, InternVideo2) into an explicit
4D feature field using Gaussian Splatting. Our experiments
showcase novel view segment anything, geometric and ap-
pearance scene editing, and free-form VQA across all time
steps, empowered by LLMs in feedback loops. These ad-
vancements broaden the scope of agentic AI applications by
providing a foundation for scalable, contextually and spa-
tiotemporally aware systems capable of immersive dynamic
4D scene interaction.
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1. Introduction
The rapid evolution of 2D vision and multimodal mod-
els has been fueled by access to massive curated datasets
with rich annotations, alongside breakthroughs spanning
multiple domains. These developments have led to re-
markable progress in various tasks, including image seg-
mentation [64], image editing [6], promptable semantic
segmentation [29, 66], and Visual Question Answering
(VQA) [37, 81]. Despite these advances, the processing
and interpretation of dynamic 3D data—crucial for appli-
cations such as autonomous driving, robotics, and 3D asset
creation—still lag significantly behind the development of
versatile and robust 2D foundation models. A fundamen-
tal challenge in 3D vision lies in processing multi-view im-
ages and widely available monocular videos, which often
suffer from limited camera information and a scarcity of
well-annotated, fine-grained per-frame datasets. To bridge
this gap, we propose to leverage the latent features of
well-trained representations from 2D and multimodal do-
mains [29, 37, 64, 66, 81] and adaptively lift them into
higher-dimensional feature fields (such as 3D and 4D) in
a scalable and efficient manner, enabling the direct transfer
of 2D functionalities into 4D with minimal data annotation
and training overhead.

Constructing 4D feature fields from casually captured in-
the-wild videos is significantly challenging. Existing ap-
proaches for static 3D feature fields [14, 28, 30, 33, 45, 63,
70, 78, 93, 98, 100] are not directly applicable to 4D scenar-
ios for three primary reasons. First, these methods typically
rely on well-calibrated, multi-view input images with pre-
cise camera poses, which are difficult to obtain from casual
videos. Second, extending static feature fields to include an
additional temporal dimension results in substantial mem-
ory demands, leading to unstable and costly optimization.
Third, previous approaches are limited to task-specific fea-
ture fields, necessitating full-parameter re-training for adap-
tation to new tasks.

In this paper, we set an ambitious goal: to parse in-the-
wild monocular videos into a unified dynamic 4D represen-
tation that not only reconstructs accurate appearance and
geometry but also seamlessly integrates advanced function-
alities from a range of 2D foundation models. To tackle
the aforementioned challenges, we propose enhancing the
dynamic 3D Gaussian Splatting-based 4D scene represen-
tation [27, 48] with a unified latent feature capable of dis-
tilling diverse 2D foundation features, achieving both flexi-
bility and efficiency. However, directly lifting 2D feature
maps to dense, dynamic 3D Gaussians incurs significant
computational costs and fails to scale with the spatial and
temporal complexity of the scene. Inspired by recent ad-
vancements in Gaussian-based 4D reconstruction [34, 79],
we propose to leverage the smooth, compact nature of un-
derlying scene semantics and represent the dense 4D fea-

ture field using a sparse set of base or “Scaffold” features,
enabling efficient representation and scalable adaptation to
various downstream tasks.

Our pipeline is fully end-to-end differentiable, super-
vised by ground truth color and feature maps exported
from 2D vision foundation models. Its general and model-
agnostic design supports a wide range of vision tasks,
spanning 2D (semantic and promptable segmentation), 3D
(scene editing), and 4D (spatial and temporal VQA). Fur-
thermore, our compact and versatile 4D feature field serves
as a bridge, seamlessly integrating these tasks with LLMs
in a continuous feedback loop. This integration enables in-
tuitive and efficient execution through free-form, high-level
natural language inputs or direct user interactions. By uni-
fying diverse vision tasks, our framework—seamlessly in-
tegrated with LLMs—paves the way for the development
of advanced, contextually and spatiotemporally aware 4D
agentic AI systems.

We summarize our contributions as follows:
• We propose a general 4D feature field distillation tech-

nique using Gaussian Splatting to build an interactive 4D
scene and lift the functionalities of any 2D vision (im-
age/video) foundation models into the 4D realm, relying
solely on monocular video input.

• We introduce the first compact and versatile 4D Gaussian
feature field representation, which leverages the smooth,
low-rank nature of scene semantics by modeling the
dense 4D feature field as interpolations of a sparse set of
base features.

• We develop an LLM-powered agentic AI capable of inter-
preting natural language prompts, dynamically adjusting
configuration parameters, and iteratively refining results
through trial and feedback, enabling intelligent 4D scene
interaction and manipulation.

2. Related Works

2.1. 4D Representations for Reconstruction and
Generation

Various 4D representations are designed to support a wide
variety of 4D tasks. Among them, 4D reconstruction is the
most widely studied topic that drives the field. Early meth-
ods [7, 11, 15, 17, 18, 32, 39, 54, 56–58, 62, 73, 82] imple-
ment variants of Neural Radiance Fields [51] to represent
a dynamic 4D scene through implicit or hybrid representa-
tions. More recently, 3D Gaussian [27] has prevailed as a
popular explicit 3D scene representation [9, 92, 99] and var-
ious variants [12, 22, 23, 34, 42, 48, 49, 72, 79, 83, 89, 90]
are similarly proposed to represent dynamic 4D scenes. Ad-
ditionally, the field of 4D Generation [44, 67, 68, 86, 91] has
witnessed great advancements in representations that are
more suitable for generative settings. In summary, most 4D
representations can be categorized into deformation-based
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Figure 2. Method overview. Given an input monocular video, we infer 2D priors to segment static background (represented by static
3D Gaussians augmented with latent features) and dynamic foreground (represented by dynamic 3D Gaussians guided by Motion Scaf-
folds [34], a set of nodes {vi} encoding 3D motion trajectories and latent features hi). Dynamic Gaussian features and motions are com-
puted via interpolation from their K-nearest scaffold nodes. At each timestep, dynamic Gaussians are warped and fused with static Gaus-
sians. A parallel rasterization [98] generates RGB images and a unified latent feature map, decoded into task-specific features—illustrated
here by SAM2 [66], CLIP-LSeg [35], and InternVideo2 [81] for representative 2D (novel view segmentation), 3D (scene editing), and 4D
(spatiotemporal VQA) tasks. Our framework generalizes to any 2D vision foundation model and is trained end-to-end using input RGB
frames and customized features from pretrained 2D models. At inference, rendered feature maps from arbitrary views and timesteps are
directly fed into task-specific decoders, seamlessly supporting user prompts and LLM interactions to form a unified 4D agentic AI system.

approaches [41, 48, 55, 56, 61, 74, 77, 84], temporal ex-
tended approaches [7, 12, 16, 89, 95], or an ensemble of
multiple time-varying representations [19, 38, 40, 68, 85].
In our work, we extend the direction of dynamic 3D Gaus-
sian Splatting to a versatile Gaussian feature field that si-
multaneously embraces multiple features for various vision
tasks beyond 4D reconstruction and generation. To the best
of our knowledge, this direction has not been widely ex-
plored.

2.2. 4D Reconstruction from Monocular Video
In the context of 4D reconstruction tasks, most meth-
ods [43, 53] focus on reconstructing dynamic 4D scenes
from multiple well-calibrated videos. In contrast, another
popular direction is to synthesize generic 4D scenes from
monocular videos [19, 40, 55, 56, 61, 77, 84, 85]. For un-
posed casual videos, non-rigid structure-from-motion work-
flows [3–5, 10, 20, 24, 25, 31, 36, 52, 65, 76, 87, 88, 96]
are adopted for estimating camera poses for each frame for
further processing. Shape-of-motion [79] and MoSca [34]
develop end-to-end workflows that reconstruct 4D scenes
from casual captured videos with the help of 3D Gaus-
sians [27, 47, 48]. Another series of work [38, 67, 68, 91]
assumes the camera is fixed for the video and reconstructs
3D in the camera coordinate space. More recently, the suc-
cess of DUSt3R [80], a transformer-based novel paradigm
for 3D reconstruction of arbitrary image collections, has
been adapted for dynamic scenes in MonST3R [94]. In

comparison, we aim to perform monocular 4D reconstruc-
tion and feature lifting simultaneously, which cannot be
achieved in previous approaches.

2.3. Feature Field Distillation

Research in novel view synthesis and feature field repre-
sentation has been extensively developed within the NeRF
framework [50] and 3D Gaussians [27]. Seminal works
such as Semantic NeRF [97] and Panoptic Lifting [71]
have integrated semantic information from segmentation
networks into 3D spaces, revealing that combining noisy
or inconsistent 2D labels within a 3D context can produce
clear and accurate 3D segmentations. Building on this con-
cept, methods such as those in [69] have shown that min-
imal input, like basic foreground-background masks, can
be effective for object segmentation in 3D. Moving be-
yond label estimation to optimize NeRF, approaches like
Distilled Feature Fields [30], NeRF-SOS [13], LERF [28],
and Neural Feature Fusion Fields [78] have embedded
pixel-aligned feature vectors from tools such as LSeg or
DINO [8] into NeRF structures. More recently, numerous
works [33, 45, 63, 70, 93, 98, 100] adopt similar strategies
to distill information from well-trained 2D models to 3D
Gaussians. However, feature lifting into 4D fields is not
properly solved yet. In this work, we make the first attempt
to deliver a versatile 4D Gaussian feature field framework
that embraces multiple task features simultaneously.
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Figure 3. Segment Anything in Dynamic 4D Scenes with SAM2
Feature Field. For any rendered novel view video, we support:
(a) Promptless segmentation (segment everything): when no user
prompt is provided, segmentation masks are automatically as-
signed at the first frame (t = 0) and then propagated across all
frames. (b) Promptable segmentation (segment anything): the user
can segment any object—static or dynamic—at any timestep us-
ing a point or box prompt, and the corresponding mask is robustly
tracked and propagated through subsequent frames.

3. Method
Given a monocular RGB video I = I1, . . . , It, we recon-
struct the underlying 4D scene as a set of dynamic 3D Gaus-
sians (Sec. 3.1), each augmented with a unified latent fea-
ture embedding that distills informative features from vari-
ous 2D foundation models for downstream tasks (Sec. 3.2).
To address the challenge of handling high-dimensional fea-
tures across a large number of Gaussians and timesteps, we
adopt a compact feature representation (Sec. 3.3).

3.1. Preliminaries: Dynamic 3D Gaussian Splatting
Following state-of-the-art monocular video-based dynamic
4D scene reconstruction approaches [34, 72, 79], we repre-
sent the scene with dynamic 3D Gaussians [48], namely a
set of persistent 3D Gaussians [27] that deform over time t.
Specifically, we base our approach on MoSca [34], which
can reconstruct the dynamic 4D scene from monocular ca-
sual video. Like other methods, MoSca addresses the chal-
lenge from single-view partial observation by leveraging
priors from 2D foundation models [2, 21, 26, 60, 75] and
by regularizing Gaussian motion trajectories. At the core
of MoSca’s method is a structured graph named 4D Motion
Scaffold (V, E) that drives the deformation of individual 3D
Gaussians G = {Gj}nj=1 (see Fig. 2). Each node v(i) ∈ V
describes a 3D motion trajectory [Q

(i)
1 , . . . ,Q

(i)
t ],Q =

[R, t] ∈ SE(3) with a control radius r(i). Edges E de-
scribe a k-nearest neighbor graph over the motion trajec-
tories. Given any 3D Gaussian located at x at time τ , to
compute its deformation to time τ ′, we first find the trajec-
tory node v(i∗) with the closest position p

(i)
τ at time τ , i.e.,

i∗ = argmini ||p(i)
τ − x||, then interpolate the deformation

from K nearest trajectory nodes {v(i)}i∈E(i∗), with weights
{wi} computed from the Gaussian-to-trajectory distance

and the node control radius. In other words, the dense, per-
Gaussian motion trajectories are interpolations of a much
smaller (100×) set of trajectory nodes. This design lever-
ages the low-rank nature of the underlying scene motion and
effectively regularizes Gaussian motions under limited su-
pervision. We follow [34]’s protocols to initialize and train
4D Motion Scaffolds and dynamic Gaussians that represent
the dynamic foreground elements, as well as another set of
static Gaussians that model the static background. Please
refer to our supplementary material for full details.

3.2. Unified Latent Feature Distillation
We aim to go beyond appearance reconstruction by build-
ing a unified, versatile, and dynamic 4D feature field repre-
sentation, capable of supporting diverse downstream visual
tasks T = {T 1, . . . , TS} spanning 2D, 3D, and 4D, such
as novel-view segmentation (2D), scene editing (3D), and
scene-level spatiotemporal VQA (4D). A straightforward
way to construct this 4D feature field is to extend exist-
ing 3D feature field frameworks [98] by replacing their 3D
reconstruction modules with dynamic 4D reconstruction.
However, this approach addresses each downstream task T s

independently: input frames I = {I1, . . . , It} are encoded
into task-specific 2D feature maps Fs = {F s

1 , . . . , F
s
t } us-

ing dedicated vision foundation model encoders Es, leading
to separate feature fields per task. Consequently, perform-
ing three tasks would require three separate reconstructions,
making this strategy inefficient and redundant.

To overcome this limitation, we propose distilling a
unified 4D feature field to coherently fuse diverse 2D vi-
sion foundation model features across views and timesteps,
providing consistent feature access in 4D (3D space +
time) for various downstream tasks. Specifically, as shown
in Fig. 2, we utilize the parallel N-dimensional Gaussian
rasterizer [98] to simultaneously render RGB images along
with a unified latent feature F , which is jointly learned
with a set of lightweight decoders {D1, . . . ,DS}. Each de-
coder maps the shared latent feature F ∈ RD into task-
specific target features Fs ∈ RDs , where D and Ds de-
note the dimensions of the unified latent and task-specific
features, respectively, with D ≪ Ds. Compared to sepa-
rately optimizing high-dimensional features for each task,
our unified latent representation significantly reduces com-
putational overhead during rasterization. During the opti-
mization process, we attach the feature vector fj ∈ RD to
each 3D Gaussian Gj ∈ G, warp Gj to the target timestep
τ following the process introduced in [34], and rasterize fj
the same way we rasterize Gaussian color cj as [98]. Con-
ceptually, the RGB and feature reconstruction from view-
point v at timestep τ are computed as:

Îvτ = Rasterize(v, {warp(Gj , τ), cj)}Gj∈G)

F̂ v
τ = Rasterize(v, {warp(Gj , τ), fj)}Gj∈G)

(1)
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Figure 4. Baseline Comparison on SAM2 Inference. We com-
pare segmentation quality and inference speed between (a) the
naive RGB-based approach and (b) our feature-based method.
Ours achieves comparable segmentation, accurately tracking the
object over time, and avoids RGB artifacts (red box region at
t = 70), while reducing inference time to about 4× speed-up.

The resulting feature map F̂τ (with viewpoint v omitted
for simplicity) is decoded by Ds into a task-specific fea-
ture map F̂ s

τ , supervised by the ground-truth feature map
obtained from a customized vision model encoder Es (e.g.,
SAM2). Concretely, we optimize the following feature loss
Lfeat to jointly learn the feature field, alongside the photo-
metric loss from [34] used for learning the radiance field.

Lfeat =

S∑
s=1

MSE(F̂ s
τ , F

s
τ ), (2)

F̂ s
τ = Ds(F̂τ ), F s

τ = Es(Iτ ). (3)

Note that the feature loss and photometric loss are indepen-
dent, and introducing the feature field does not degrade the
quality of the radiance field reconstruction (see Tab. 1).

3.3. Scaffold-Based Compact Feature
While our unified feature field effectively reduces feature
dimensionality, optimizing a feature vector for every Gaus-
sian remains computationally expensive. However, seman-
tic features tend to be smooth in 3D and exhibit strong
local correlations, similar to Gaussian motion trajectories.
To leverage this correlation, we propose representing per-
Gaussian features {fj} as linear combinations of a smaller
(100× fewer) and more compact set of base features {hi},
conveniently attached to nodes {v(i)} of the 4D Motion
Scaffold (see Fig. 2). Recall that we compute per-Gaussian
deformations by interpolating from their K-nearest trajec-
tory nodes {v(i)}i∈E(i∗) with interpolation weights {wi}.
We reuse these same weights to obtain the per-Gaussian
unified features as:

fj =
∑

i∈E(i∗)

wihi. (4)

This compact feature representation significantly reduces
the number of parameters required for optimization and

provides structural regularization, encouraging smoother
learned features.

3.4. Interaction with AI Agent via Feature Fields

Agentic AI typically requires cross-modal interactions, no-
tably between language and vision. In this work, we aim
to build an AI agent that supports direct language interac-
tions with our dynamic 4D scene representation. Such in-
teraction requires a shared feature space between text and
Gaussian features. However, text features are usually high-
dimensional. For instance, language-guided scene editing
requires CLIP features of 512 dimensions. Directly as-
signing these high-dimensional features to each Gaussian is
computationally expensive. Feature 3DGS [98] addresses
this by assigning each Gaussian a full 512-dimensional
CLIP feature via a parallel N-dimensional Gaussian raster-
izer, enabling direct language interaction but resulting in
slow rendering speeds and excessive memory usage. Al-
though Feature 3DGS proposes a CNN-based acceleration,
it operates only on 2D rendered maps, failing to directly re-
solve the feature mismatch in 3D. In contrast, we optimize
a compact, lower-dimensional Gaussian feature (D = 32),
train an MLP-based decoder on rendered 2D features, and
apply it directly to 3D Gaussian features during inference.
Given the intrinsic flexibility of MLPs, our approach effi-
ciently bridges language features and our compact feature
fields, enabling direct interaction between LLMs and our
4D scene through language. Furthermore, by leveraging In-
ternVideo2 features, which can be rendered and decoded
from any viewpoint in 3D space over time, we naturally lift
the video chatbot LLM from 2D to 4D, enabling free-form
language interaction with the AI agent within 4D space.

Beyond direct language interaction, LLM agents can op-
erate in the loop for manipulation tasks by interpreting user
prompts, automatically optimizing hyperparameters, and it-
eratively refining results for downstream applications. For
example, given a scene-editing prompt like “Delete the
dog,” the agent parses the operation command (“delete”)
and the target object (“dog”), then generates an editing con-
figuration with relevant hyperparameters, such as the soft-
max threshold for matching Gaussians to the target object.
It tests various thresholds, evaluates the quality of rendered
image samples, and selects the optimal configuration. This
is then consistently applied across the entire 4D scene, en-
abling efficient, intelligent editing with minimal user input.

This perception-reasoning-action loop empowers the
LLM-driven 4D agent to interpret, execute, and refine com-
plex scene manipulations, making it a powerful tool for
adaptive 4D scene editing and interaction. The system is
particularly valuable for applications like interactive VR
content creation and editing, where dynamic scene under-
standing and precise, context-aware modifications are es-
sential.
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Figure 5. Semantic 4D Scene Understanding with CLIP Fea-
ture Field. By lifting CLIP-LSeg [35] features into a 4D feature
field, we enable pixel-level semantic segmentation from any view
at any timestep. This allows robust 4D scene understanding, even
as object appearances change over time—for example, accurately
identifying a blooming flower from bud to full bloom across views.

Method PSNR↑ mIoU↑ accuracy↑ Size (MB)↓
MoSca 25.166 - - 67.726
MoSca + Feature 3DGS 25.191 0.506 0.881 593.907
Ours (single CLIP head) 25.186 0.510 0.880 95.294
Ours (full model) 25.197 0.503 0.876 95.457

Table 1. Semantic segmentation on the Nvidia dataset [46]. Our
method achieves comparable radiance reconstruction (PSNR) and
segmentation performance, while significantly reducing memory
usage compared to the baselines.

4. Experiments
In this section, we present experimental results and analyses
of the capabilities of our proposed Feature4X framework.
Based on the type of desired output, we categorize tasks into
2D (segmentation; see Secs. 4.1 and 4.2), 3D (scene editing;
see Sec. 4.3), and 4D (spatiotemporal VQA; see Sec. 4.4).

4.1. Scene Interaction with Segment Anything
Segment Anything Model 2 (SAM2) [66] is an advanced
segmentation model for promptable visual segmentation
across images and videos, supporting various input types
such as points and bounding boxes for interactive and pre-
cise results. In our approach, we extract per-frame features
using SAM2’s image encoder and lift them into a 4D feature
field, enabling direct decoding from novel-view rendered
feature maps. This allows segmentation that is inherently
aware of both viewpoint changes and temporal dynamics, as
shown in Fig. 3. Masks are seamlessly propagated through
space and time, regardless of object motion or camera tra-
jectory, supporting both automatic and user-guided segmen-
tation with temporal coherence.

Notably, our approach bypasses the need to first render
RGB videos and then apply the full SAM2 pipeline (see (a)
in Fig. 4). We observe that artifacts in novel view RGB
rendering can mislead SAM2 during encoding, resulting in

ambiguous and inaccurate segmentation despite smoother
masks. In contrast, our method achieves faster and more
robust segmentation in 4D scenes by operating directly in
feature space.

4.2. Scene Understanding with Semantics
To achieve pixel-level semantic segmentation across any
novel view and timestep, we extend the capabilities of
CLIP-LSeg [35] by lifting its features into a 4D CLIP fea-
ture field. CLIP-LSeg is a language-driven semantic seg-
mentation model that leverages the Contrastive Language-
Image Pre-training (CLIP) framework to align textual de-
scriptions with visual content, enabling zero-shot segmen-
tation by interpreting descriptive input labels. By lifting
these 2D features into a 4D representation, our approach
captures both spatial and temporal information, facilitating
consistent semantic understanding in dynamic scenes, even
when objects undergo significant appearance changes over
time. As depicted in Fig. 5, our model accurately identi-
fies a flower throughout its blooming process—from bud to
full bloom—across various viewpoints and timesteps. This
demonstrates the model’s proficiency in maintaining consis-
tent semantic understanding despite substantial visual trans-
formations in dynamic scenes.

Tab. 1 presents a quantitative comparison between
our method and baselines on the Nvidia dataset [46].
“MoSca [34]” is the baseline 4D reconstruction method,
while “MoSca + Feature 3DGS [98]” is a naive, non-
compact baseline using RGB + feature rasterization. Our
models—using a 32-dimension latent feature and 512-
dimension CLIP-LSeg [35] as the target—maintain compa-
rable PSNR to MoSca, showing no loss in reconstruction
quality. The single CLIP head variant achieves the high-
est mIoU, demonstrating effective feature distillation. Al-
though the naive baseline yields slightly higher accuracy,
our models are about 6.2× more space-efficient, with the
full model delivering competitive performance while re-
maining compact and general-purpose.

4.3. Scene Editing with Language and AI Agent
We employ an LLM agent (GPT-4o [1]) to interpret natu-
ral language prompts, optimize editing parameters, execute
precise queries, and iteratively refine results for intelligent
3D scene editing. The agent begins by parsing the user’s
high-level prompt to identify the editing action—such as
“extract,” “delete,” or “change color”—and the target ob-
ject (e.g., “cow”), as shown in Fig. 6. Based on the task,
it generates candidate configurations with varying parame-
ters relevant to the prompt. Specifically, we first compute
the probability of each 3D Gaussian corresponding to a lan-
guage description l of the target object as:

p(l | j) = es∑
si∈L esi

, s =
q(l) · fj

∥q(l)∥∥fj∥
, (5)
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"Change the cow color to black and white""Delete the moving camel""Extract the swan"

Figure 6. Scene Editing with AI Agent. Given user prompts, our GPT-powered agent interprets editing intent and autonomously performs
scene edits via our 4D CLIP feature field. Examples include both geometric (e.g., “extract” and “delete”) and appearance (e.g., “change
color”) editing in 3D space. While results may not be perfect due to imperfect fine-grained feature alignment and non-optimal editing
parameter tuning, the agent adaptively refines parameters and applies edits consistently across views and time—greatly reducing the need
for manual tuning—and demonstrates robust, interactive 4D scene manipulation.

where q(l) is the text feature, fj is the CLIP feature of Gaus-
sian j, and L is the label set of all possible scene objects.
The agent filters Gaussians using various thresholds based
on the softmax probability p(l | j), applies the edit config-
uration, and evaluates the results via rendered image sam-
ples. It selects the parameter setting that best aligns with
the intended edit and applies it consistently across all video
frames, ensuring coherent editing throughout the 4D scene.

This GPT-powered 4D Agentic AI system interprets, ex-
ecutes, and refines complex scene manipulations, serving
as an intelligent assistant for adaptive editing and interac-
tion. By autonomously exploring, selecting, and tuning pa-
rameters—tasks typically handled by human editors—the
agent enhances responsiveness and consistency. GPT acts
as a self-refining decision-maker, illustrating the potential
of agentic AI in creative and technical workflows where
iterative optimization and goal-directed behavior signifi-
cantly streamline and elevate editing tasks.

4.4. Scene Reasoning with 4D Chatbot Agent

While large vision-language models (VLMs) have demon-
strated impressive performance in visual question answer-
ing (VQA) tasks, their application has predominantly been
confined to 2D visual modalities, such as images and
videos. To our knowledge, we are the first to extend the ca-
pabilities of a VLM (Video-LLM) into 4D—encompassing
three spatial dimensions plus time—by integrating VLM
knowledge into our 4D feature field. This advancement en-
ables a more comprehensive understanding and interaction
with dynamic 4D scenes, capturing both spatial and tempo-
ral nuances beyond the static 2D perspective.

We utilize InternVideo2 [37, 81]–a state-of-the-art video

foundation model–to extract comprehensive video features.
Specifically, we sample the input video into several clips,
each comprising 8 frames sampled at equal intervals to en-
sure enough GPU memory available during the whole pro-
cess. These clips are processed through InternVideo2’s vi-
sion transformer encoder to obtain segment-level features
and then aggregated together. Additionally, for each seg-
ment, InternVideo2 generates a class token representing
high-level semantic information. We compute the average
of these class tokens to form a global video representation.
This class feature is then concatenated with the aggregated
segment features, effectively integrating temporal informa-
tion which is necessary for dynamic scene reasoning.

In our system, free-form visual question answering
(VQA) is supported through a language model [37], en-
abling users to interact with a chatbot agent using natu-
ral language while exploring 4D dynamic scenes, as illus-
trated in Fig. 7. Unlike prior approaches that rely solely on
2D monocular video—limited to a single view at a single
time step—our method leverages the reconstructed 4D radi-
ance and feature fields to support richer inference sources,
including both local novel views (via free camera move-
ment) and global novel views (via zoom-out for broader
context). In the example shown in Fig. 7, we observe
that InternVideo2, when operating on the input monoc-
ular video, fails to correctly answer spatial and tempo-
ral questions—even when the answers are obvious to hu-
mans—while the same model, using our global novel view
feature, succeeds (see Tab. 2). This is because monocu-
lar video lacks the spatial coverage and contextual cues
necessary for spatiotemporal reasoning. In contrast, our
framework allows rendering of novel views and their cor-
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Local Novel View Local Novel View Feature

Global Novel View Global Novel View Feature

Input Video Frame

Inference SourceVQA

How many window shutters there?

LLM

User

There are 4 window shutters.

(c) Temporal Question

LLM

User

The dog is moving to the left.

Which direction is the dog moving?

(b) Spatial Question

What color is the dog?

LLM

User

The dog is black and white.

(a) Genral Question

Figure 7. VQA with Chatbot Agent. (Left) Our model supports free-form VQA across diverse question types—general, spatial, and
temporal—by distilling InternVideo2 [81] features. (Right) At each timestep, we reconstruct both a 4D radiance field and a 4D feature field,
providing more inference sources beyond the input video frame—including local (moving camera) and global (zoomed-out) novel views
and their corresponding feature maps—thereby supporting VQA in 4D and enhancing the model’s spatiotemporal reasoning capabilities.

Inference Source General Spatial Temporal Time (s)
Input Video View ✓ × × 33.65
Local Novel View ✓ ✓ × 33.86
Local Novel Feature ✓ × ✓ 11.99
Global Novel View ✓ × ✓ 33.37
Global Novel Feature ✓ ✓ ✓ 12.24

Table 2. VQA performance across different inference sources
with the scene shown in Fig. 7. Feature-based inference supports
all question types with lower latency, while view-based methods
are limited in spatial and temporal reasoning.

Inference Source Spatial Acc. Temporal Acc. Overall Acc. Time (s)

Input Video View 48.50 49.84 49.06 10.02
Local Novel View 49.75 51.13 50.31 9.78
Local Novel Feature 54.50 54.37 56.29 2.81
Global Novel View 47.00 49.19 47.48 10.06
Global Novel Feature 58.75 58.25 61.32 3.42

Table 3. Spatiotemporal VQA on DAVIS dataset [59]. Com-
pared to 2D video inference, our 4D feature space inference
(Global Novel Feature) enhances the Video-LLM’s spatiotemporal
reasoning while achieving approximately 3× faster inference.

responding feature maps at arbitrary time steps, injecting
explicit signals that enhance reasoning. To evaluate this
more systematically, we construct 400 objective questions
across 50 scenes in the DAVIS dataset [59], covering spa-
tial only (e.g., “Is the person facing left?”), temporal only
(e.g., “How many times does the dancer spin?”), and spa-
tiotemporal (e.g., “Which direction is the duck moving?”)
categories. As shown in Tab. 3, our method improves VQA
accuracy by enriching scene understanding through 4D fea-
ture field reconstruction, while also accelerating inference
by eliminating the need for video encoding.

5. Conclusion
We have introduced Feature4X, a general and scalable
framework that bridges casually captured monocular videos
to interactive 4D agentic AI systems. By distilling diverse
2D vision foundation model features into a unified, dynamic
4D Gaussian feature field, our method supports a wide
range of tasks across 2D (segmentation), 3D (scene editing),
and 4D (spatiotemporal VQA). Through a compact and ver-
satile representation, Feature4X achieves efficient training
and inference while maintaining high-quality appearance
reconstruction and robust semantic understanding. Further-
more, by integrating LLMs for language-based interaction
and autonomous task refinement, our system elevates tra-
ditional perception tasks into a perception-reasoning-action
loop, enabling intelligent and adaptive manipulation of dy-
namic 4D scenes. We hope Feature4X opens new avenues
in 4D vision and agentic AI research by facilitating immer-
sive, multimodal interaction with dynamic visual content.
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man Rädle, Chloe Rolland, Laura Gustafson, et al. Sam
2: Segment anything in images and videos. arXiv preprint
arXiv:2408.00714, 2024. 2, 3, 6

[67] Jiawei Ren, Liang Pan, Jiaxiang Tang, Chi Zhang, Ang Cao,
Gang Zeng, and Ziwei Liu. Dreamgaussian4d: Generative
4d gaussian splatting. arXiv preprint arXiv:2312.17142,
2023. 2, 3

[68] Jiawei Ren, Kevin Xie, Ashkan Mirzaei, Hanxue Liang,
Xiaohui Zeng, Karsten Kreis, Ziwei Liu, Antonio Tor-
ralba, Sanja Fidler, Seung Wook Kim, et al. L4gm:
Large 4d gaussian reconstruction model. arXiv preprint
arXiv:2406.10324, 2024. 2, 3

[69] Zhongzheng Ren, Aseem Agarwala†, Bryan Russell†,
Alexander G. Schwing†, and Oliver Wang†. Neural vol-
umetric object selection. In CVPR, 2022. († alphabetic
ordering). 3

[70] Jin-Chuan Shi, Miao Wang, Hao-Bin Duan, and Shao-
Hua Guan. Language embedded 3d gaussians for open-
vocabulary scene understanding. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5333–5343, 2024. 2, 3

[71] Yawar Siddiqui, Lorenzo Porzi, Samuel Rota Buló, Nor-
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